UVA 11090 - Going in Cycle!!
题意:给定一个有向图,球平均权值最小的回路
思路:二分+判负环,每次二分一个值mid,判断是否存在小于mid的环,那么就是(w1 + w2 + w3...) / n < mid == w1 - mid + w2 - mid + w3 - mid .... < 0,所以每次二分的时候,把边权值减掉mid,之后bellmanford判负环即可
代码:
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
typedef double Type;
const int MAXNODE = 55;
struct Edge {
int u, v;
Type dist;
Edge() {}
Edge(int u, int v, Type dist) {
this->u = u;
this->v = v;
this->dist = dist;
}
};
struct BellmanFrod {
int n, m;
vector<Edge> edges;
vector<int> g[MAXNODE];
bool inq[MAXNODE];
Type d[MAXNODE];
int p[MAXNODE];
int cnt[MAXNODE];
void init(int n) {
this->n = n;
for (int i = 0; i < n; i++) g[i].clear();
edges.clear();
}
void add_Edge(int u, int v, Type dist) {
edges.push_back(Edge(u, v, dist));
m = edges.size();
g[u].push_back(m - 1);
}
bool negativeCycle() {
queue<int> Q;
memset(inq, 0, sizeof(inq));
memset(cnt, 0, sizeof(cnt));
for (int i = 0; i < n; i++) {
d[i] = 0; inq[i] = true; Q.push(i);
}
while (!Q.empty()) {
int u = Q.front();
Q.pop();
inq[u] = false;
for (int i = 0; i < g[u].size(); i++) {
Edge& e = edges[g[u][i]];
if (d[e.v] > d[u] + e.dist) {
d[e.v] = d[u] + e.dist;
p[e.v] = g[u][i];
if (!inq[e.v]) {
Q.push(e.v);
inq[e.v] = true;
if (++cnt[e.v] > n) return true;
}
}
}
}
return false;
}
} gao;
int T, n, m;
bool judge(double mid) {
for (int i = 0; i < gao.m; i++)
gao.edges[i].dist -= mid;
bool tmp = gao.negativeCycle();
for (int i = 0; i < gao.m; i++)
gao.edges[i].dist += mid;
return tmp;
}
int main() {
scanf("%d", &T);
int cas = 0;
while (T--) {
scanf("%d%d", &n, &m);
gao.init(n);
int u, v;
double dist;
double Max = 0;
while (m--) {
scanf("%d%d%lf", &u, &v, &dist);
u--; v--;
Max = max(Max, dist);
gao.add_Edge(u, v, dist);
}
printf("Case #%d: ", ++cas);
if (!judge(Max + 1)) printf("No cycle found.\n");
else {
double l = 0, r = Max;
for (int i = 0; i < 100; i++) {
double mid = (l + r) / 2;
if (!judge(mid)) l = mid;
else r = mid;
}
printf("%.2lf\n", l);
}
}
return 0;
}